Depressor Consonants in Gengbe: A Phonetic and Phonological Survey

Samson Lotven and Kelly Berkson ACAL 47, March 24, 2016

Overview

- Background on depressor consonants and phonologization
- Phonetic and Phonological Data from Gengbe
- In Gengbe, depressor effects are not uniform across different morphological domains.
- Specifically, nouns and verbs differ as to what onset types they treat as depressors.

1. Background

- (1) **Depressor Consonants:** Consonants that trigger lower f0 (pitch) on adjacent vowels.
 - a. Depressor consonant effects are widespread and depressor consonants are usually voiced obstruents, but they may also be sonorants (Ohala 1973, Bradshaw 2000, Tang 2008).
 - b. Even English uses slight initial f0 lowering as a voicing cue (Lea 1973, Oglesbee 2008).

(2) Two types of phonetic depressor effect: f0 register (2a) and f0 contour (2b)

a. f0 register: effect persists across the vowel

Korean, Japanese (Oblesbee 2008)

(3) Phonologization of f0 register cues

- a. Thai disallows voiced stops in the onsets of high tone syllables (Perkins 2011).
- b. In Kera, the full L-M-H tone contrast is only in syllables with sonorant onsets (Pearce 2005).
- c. Ansre (1961): Ewe Non-high toneme is realized as L after voiced, and M after voiceless obstruents.

(4) **Phonologization of f0 contour cues: Tonal Bifurcation (Hyman 2013).**

a. [+voice] manifests as redundant	b. Voiced obstruents trigger	c. Voicing contrast is lost
f0 cue on left edge of vowel	Rising rather than High tone	Contrasting tone remains
/pá/ vs /bá/	→ [pá] vs [bǎ]	→ /pá/ vs. /pǎ/
English (w/o the tone)	Ewe, Gengbe	Nguni, Shona
(Lea 1973, Oglesbee 2008)	(Ansre 1961, Bole-Richard 1983)	(Downing 2009)

b. f0 contour: effect localized to the left edge of the vowel

English (Lea 1973, Oglesbee 2008)

(5) Studying phonologization of f0 cues for voicing

- a. When the phonology of a language makes use of and enhances these phonetic cues, distinctinctions are phonologized.
- b. In this area, what is phonetic and what is phonological is not always clear.
- c. Requires snapshots of languages in an intermediate stage phonologizing depressor effects.
- d. Gengbe, a Gbe language spoken in Southern Togo and Benin, gives us that opportunity.

(6) Phonological and Acoustic data

- a. Representative acoustic data appear throughout, to illustrate key observations.
- b. Pilot data from 1 male speaker recorded in Bloomington, Indiana.
- c. Data analysis: Praat (Boersma & Weenink 2016), Prosody Pro (Xu 2013).
- d. Presented here: time-normalized f0 tracks to compare across tokens.

2. Depressor consonants in nouns

(7) Nouns

a. Most restrictive domain for what counts as a depressor consonant

b. Where we collected the most robust pilot data

(8) Evidence for two underlying tonemes: L and H

- a. Where tonal minimal pairs exist, non-depressor consonant onsets introduce L vs. H opposition, while depressor consonant onsets introduce L vs. LH opposition (9-11).
- b. The distribution of H and LH tone is predictable (12).

(9) Controlled environment: monosyllabic nouns in isolation

a. In phrase-initial position, monosyllabic nouns appear with a L tone nominal prefix \dot{e} - or \dot{a} - (the choice of which is lexcially determined).

(10) Tonal minimal pairs with non-depressor onsets (voiceless obstruents and sonorants)

	L tone	Gloss	H tone	Gloss
a)	èkpề	'whistle'	èkpế	'cough'
b)	èkò	'neck'	èkó	'sand
c)	àtồ	'nest'	àtố	ʻapple'
d)	ènĩ	'cow'	èŋĩ	'bee'
e)	èmồ	'corn mill'	èmố	'way'
f)	àĨἒ	'stupidity'	àĨế	'sheep'

(11) Tonal minimal pairs with depressor onsets (voiced obstruents)

	L tone	Gloss	LH tone	Gloss
a)	ègà	'metal '	èg àá	'chief'
b)	èdò	'sickness'	èdòó	'work'
c)	àdồ	'squirrel'	àd ゔ ゙	'beak'

(12) Preceding L (as in nominal prefixes) triggers depressor effect, while preceding H does not.

- a. ànígbấ + èdòó → ànígbấdó
 'earth' 'work' 'earth work'
- **b.** $\hat{egb}\hat{e}\hat{e}$ + $\hat{a}v\hat{\mathbf{u}}\hat{\mathbf{u}}$ \rightarrow $\hat{egb}\hat{e}\hat{e}v\hat{\mathbf{u}}$ 'bush' 'dog' 'bush dog'

(13) What counts as a depressor consonant in Gengbe nouns?

- a. Voiced obstruents, including [d], as in (14).
- **b.** Depressor effect disregards following glides and liquid in clusters, as in (14k-l) and (15m-o)

(14) Depressor onsets (nouns)

	Onset	Noun	Gloss
a)	[b]	àbòó	'arm'
b)	[d]	èdòó	'work'
c)	[g]	ègầấ	ʻbigness'
d)	[gb]	ègbìi	'buttocks'
e)	$[\widehat{d3}]$	èdzãấ	'bow'
f)	[v]	àvờó	'cloth/clothes'
g)	[Z]	èzầấ	ʻnight'
h)	[β]	èβầấ	ʻspear'
i)	[ĥ]	èhàá	'group/variety'
j)	[d]	èdìí	'dirt'
k)	[gl]	àglòó	ʻjoy'
1)	[ĥj]	èhjềế	'poverty'

(15) Non-depressor onsets (nouns)

	Onset	Noun	Gloss
a)	[t]	àtí	'tree'
b)	[k]	èkú	'death'
c)	[kp]	èkpá	'fence'
d)	[þ]/[p]	àфá/àpá	ʻshout'
e)	[f]	àfí	'here'
f)	[s]	èsố	'horse'
g)	[m]	èmấ	'mosquito'
h)	[n]	ànấ	ʻbridge'
i)	[ɲ]	èŋĩ	'bee'
j)	[1]	èló	'crocodile'
k)	[w]	èwś	'corn flour '
1)	[j]	àjá	ʻair'
m)	[kl]	àkló	ʻflat boat'
n)	[fj]	èfjó	'monkey
0)	[wl]	èwlí	ʻshout'

(16) Acoustic study result preview

a. LH tone is coupled with vowel lengthening (18).

b. L tone is lower following a voiced obstruent than following a sonorant

(17) Nouns: Pilot acoustic study data

- a. 11 vowels
- b. 2 tones (L & H)
- c. 2 onset types (voiceless 'T' & voiced 'D')
- d. 3 contexts (isolation, following H, & following L)
- e. 2 repetitions each
- f. Total: 264 tokens

(19) Depressor consonants lower f0 register of L tone

a. Ansre (1961): Non-high toneme in Ewe is realized as L after voiced and M after voiceless obstruent. b. A strategy found in Korean and Japanese: f0 register as a voicing cue (Oglesbee 2008).

c. Different literatures treat this phenomenon as phonetic or phonological.

(20) Noun L and H tone-average of time normalized f0 curves

3. Depressor consonants in verbs

(21) Verbs

a. Allows more onset types to count as depressor consonants

b. Gives us a controllable phonological frame to study depressor consonants followed by level H tone

(22) In what environments do we see verbs with LH tone?

- a. In non-phrase initial environments, all H tone verbs regardless of onset type, are realized as H.
- b. In phrase-initial environments, H tone verbs with depressor consonant onsets are realized as LH, while others are realized a H (Interaction with an initial boundary L tone).
- c. Unlike the nominal system, verbal tone treats sonorants and consonant-liquid clusters as depressor consonants.

Non-Phrase-Initial	Phrase-Initial		
(23) Predication	(24) Citation		
a. mữ kpó ntísì	a. kpó		
I see lime	see		
'I saw a lime.'	'to see'		
b. mǜ bú htísì	b. bùú		
I lose lime	lose		
'I lost a lime.'	'to lose'		
c. mằ nấ gồmềd͡3èd͡3èé-á	c. pầắ		
I know beginning-the	know		
'I know the beginning."	'to know'		
(25) Plural Imperative (overt subject)	(26) Singular Imperative (no overt subject)		
a. mề tú èhỗtrú	a. tú èĥồtrú		
youPL close door	close door		
'Close the door, you all!'	'Close the door!'		
b. mì vá	b. vàá		
youPL come	come		
'Come, you all!'	'Come!'		
c. mầ l é ấsù-à	c. lèé ǘsù-à		
youPL arrest man-DEF	arrest man-the		
'You all arrest the man!	'Arrest the man!		
(27) Reduplication (preposed object)	(28) Reduplication (no preposed object)		
a. èlầ fá ~fá	a. fú ~fú		
meat cool~NOM	cool~NOM		
'cooling meat'	'cooling'		
b. èlầ vó ~vó	b. vòó ~vó		
meat decay~NOM	decay~NOM		
'decaying meat'	'decaying'		
c. nốnừ jó ~jó	c. jòó ~jó		
woman call~NOM	call~NOM		
'calling a woman'	'calling'		

(29) Verbs: Pilot acoustic study data

a. 4 vowels (i, u, a, ã)
b. 2 tones (L, H)
c. only H tone: 6 repetitions
d. Total: 48 tokens

(30) In non-phrase initial position (where we do not see LH tone), depressor effect lower level H

- a. Predication gives us a controllable environment to study H tone (not LH) after depressors
- b. Frame: isial <u>v</u>isial <u>v</u>isial <u>v</u>isial <u>v</u>isial already."
- c. Lower f0 in general than noun study because the H is not the first H in the phrase (downstepping)
- d. Suggests depressor effect is present in level H as seen in level L
- e. Stongest effect is after the release of the consonant on the left edge of the vowel

(31) Verbs level H tone-time normalized f0 curves

(32) Consonant Clusters in Verbs

a. In nouns, clusters pattern with their initial consonant

b. In verbs, consonant-glide clusters pattern according to the initial consonant (33).

c. In verbs, consonant-liquid clusters are always depressors (34).

(33) Consonant-Glide clusters in verbs (citation form)

a. fj ó	b. ljàá	c. hjềế
'to teach'	'to climb'	'to need'

(34) Consonant-Liquid clusters in verbs (citation form)

a. klòó	b. ŋlồố	c. glòó
'to fade'	'to fold'	'to boast'

	TV	TLV	TGV	DV	DLV	DGV	NV	NLV	NGV
Nouns									?
Verbs									
T-Voicel	ag Ohatmy	ant D-Va	inad Ohata	mont N-G	lanarant]	-Liquid	$C = C i d_{2}$	V-Verual	

T=Voiceless Obstruent, D=Voiced Obstruent, N=Sonorant, L=Liquid, G=Glide, V=Vowel

(36) Bradshaw's (2000) analysis

- a. Bradshaw analyzes the singular imperative in Ewe as formed by a prefixed L tone morpheme that docks with the vowel only when the onset is transparent (i.e. a depressor consonant).
- b. Non-depressors are opaque and block tone docking.
- c. We adapt this analysis for Gengbe, but consider the initial L to be a boundary tone.

(37) Boundary L effect

(38) Phonologization and Grammaticalization

- a. Verbs treat more onset types as depressors than nouns.
- b. Verbs interact with covert L tone, nouns interact with overt L tone.
- c. In general, verbs are more prone to grammaticalization as adpositions, auxilliaries, etc.
- d. The verbal complex is a good place to look for lexical distinctions emerging between H and LH.

(39) Where H and LH contrast.

a. A case of a boundary tone effect blocked by unpronounced material.

(40) Jussive

(nấ nế)	mấ	dù nấ
(JUSS MOOD)	I.FUT	eat thing
'Let me eat!'		

(41) Future

mằấ dù nấ I.FUT eat thing 'I will eat.'

4. Additional Data

- (42) f0 is present in the signal whenever there is voicing, so it is constantly available as a cue a. It is a cue for vowel height.
 - b. Where no depressor effect is present, it is a cue for nasality.

(43) Higher f0 corresponds with high vowels

(44) Vowel nasality lowers f0 in vowels with voiceless onsets

5. Conclusion

(45) f0 is complex and segmental influence is diverse

- a. Depressor consonants trigger LH tone (with vowel lengthening) in the right environments.
- b. Verbs and nouns differ in what they count as phonological depressor consonants.
- c. Verbs and nouns also differ in whether overt L tone triggers depressor effects.
- d. Depressor consonants effect f0 register across vowels with level L and H tone.
- e. Vowel nasality, vowel height, and phrase position also effect the surface realization of tone.

(46) Future research

- a. This study is preliminary, we will soon be collecting more data in Togo.
- b. Do sonorants trigger lower register f0? Since verbs, but not nouns count sonorants as depressors, do we see a difference in L tone register based on lexical category?
- c. What can the depressor behaviour of consonant clusters tell us about syllable structure?
- d. What does variation look like between speakers? Communities? Gbe lects?

Thank You!

References

Ansre, G. (1961). The tonal structure of Ewe (Masters Thesis, The Kennedy School of Missions of The Hartford Seminary Foundation: Hartford, Connecticut).

Boersma, Paul & Weenink, David (2016). Praat: doing phonetics by computer [Computer program]. Version 6.0.14

Bole-Richard, R. (1983). Systématique phonologique et grammaticale d'un parler Ewe: le Gen-Mina du Sud-Togo et Sud-Bénin. Paris: Editions L'Harmattan.

Bradshaw, M. M. (2000). A crosslinguistic study of consonant-tone interaction (Doctoral dissertation, Ohio State University).

Capo, H. (1991). A comparative phonology of Gbe. Berlin: Foris Publications.

Downing, L. J. (2009). On pitch lowering not linked to voicing: Nguni and Shona group depressors. *Language Sciences*, *31*(2), 179-198.

Hyman, L. M. (2013). Enlarging the scope of phonologization. In Yu, A. (Ed.), *Origins of sound change: Approaches to phonologization*, (pp. 3-28). Oxford: Oxford University Press.

Lea, W. A. (1973). Segmental and suprasegmental influences on fundamental frequency contours. In Hyman, L (Ed.), *Consonant types and tone (No.1)* (pp. 15-70). Los Angeles: University of Southern California.

Oglesbee, E. (2008). Multidimensional stop categorization in English, Spanish, Korean, Japanese, and Canadian French (Doctoral dissertation, Indiana University: Bloomington).

Ohala, J. J. (1973). The physiology of tone. In Hyman, L (Ed.), Consonant types and tone (No.1) (pp. 1-14). Los Angeles: University of Southern California.

Pearce, M. (2005). Kera tone and voicing. UCL Working Papers in Linguistics, 17, 61-82.

Perkins, J. (2011). Consonant-tone interaction and laryngealization in Thai. In presentation, 21st Annual Conference of the Southeast Asian Linguistics Society (SEALS 21) (pp. 11-13).

Xu, Y. (2013). ProsodyPro — A Tool for Large-scale Systematic Prosody Analysis. In Proceedings of Tools and Resources for the Analysis of Speech Prosody (TRASP 2013), Aix-en-Provence, France. 7-10.